K15-P-PM07

糖鎖ハイブリッド集積界面のバイオインターフェース 機能発現

(九大農)〇上村富美、(九大院農)北岡卓也

Background

糖鎖:さまざまな生命現象に関与 細胞の発生・分化・接着・疾病

糖鎖密度は細胞による糖鎖認識に重要!!

● キチン: 牛理活性糖 免疫に関与

Chitin: BGIcNAc6 HO OH OHO OHO OHO OHO Cellulose: βGlc6 HO OH OHO OH

なぜ糖鎖6量体なのか?

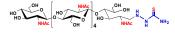
- ●セルロース-キチンの強い分子間水素結合
 - →**高密度**な糖鎖基板を形成可能
- ●細胞が認識できるオリゴ糖

TSC-Au

In this study

- ●キチン密度を制御した糖鎖基板の調製
- ●キチンを認識した時にのみシグナル伝達が 起こる細胞を用いたCell Assayで、糖鎖と 細胞の応答を定量的に測定!

固定化糖鎖基板を細胞が認識するのか?


本技術応用のためには 基板に固定化した糖鎖を 細胞が認識することが重要!

Experimental

糖鎖自己組織化膜 (SAM) 調製

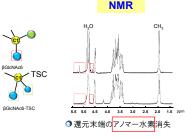
Cell Assay

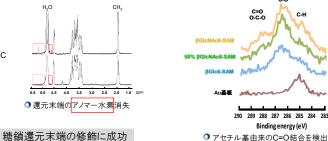
糖鎖SAMをTCPSに播種

培養細胞: HEK293細胞 播種密度: 2.0×105 cells/well 培養環境: 37 ℃, 5% CO₂

HEK293細胞

細胞表面にキチンを認識する Toll-Like Receptor 2 を発現



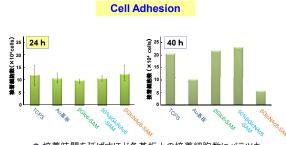

● キチン認識後TLR2シグナル伝達 →炎症物質放出

◎ シグナル伝達時に分泌されたアル カリフォスファターゼの活性を測定

Results & Discussion

● アセチル基由来のC=O結合を検出 Au基板に

糖鎖薄膜形成

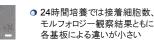

XPS

Sugar density (chain/nm²)

Sample	Results of XPS analysis		Results of QCM analysis *		/ Sugar density (chains/nm²)	
	% βGIcNAc6-TSC	% βGlo6-TSC	ΔF (Hz)	Total weight (g)	pgicNAc6-TSC	βGIo6-TSC
BGIcNAc6-SAM	100	0	-220	6.60×10°	0.654	0
75% BGICNAOS-SAM	49.9	50.1	-235	7.05×10*	0.360	0.361
50% poinage-sam	19.2	8.08	-194	5.82×10°	0.122	0.514
25% poinage-sam	17.9	82.1	-202	6.06×10 ⁻⁹	0.119	0.546
BGIo6-SAM	.0	100	-236	7.08×10 ⁻⁹	(0	0.808

■ XPS測定とQCMによる糖鎖吸着量 から各基板上の糖鎖密度を算出

基板上に糖鎖が高密度 (0.6-0.8 分子/nm²)に存在


○ 培養時間を延ばすほど各基板上の接着細胞数にバラツキ

24 h

基板上の条件を揃えるため、 培養時間は24時間に設定

Data not shown **Cell Response**

- 基板により細胞炎症度に大きな変化 キチン基板でも密度の違いが影響?!
- 細胞が基板を認識 シグナル伝達に影響
- Data not shown ● 細胞が最も認識するキチン密度
- キチン密度の違いで 細胞炎症度に大きな変化

Conclusion

- 細胞:固定化糖鎖基板を直接認識!
- 基板:細胞のシグナル伝達に影響!
- 糖鎖密度:シグナル伝達に強く関与!

細胞表面タンパク質が 固定化糖鎖の密度を認識!!

基板の糖鎖密度デザインにより 細胞応答を操作可能な 新規スキャフォールドの開拓へ!