
マンガンペルオキシダーゼによるブナ木粉中リグニンのin vitro分解

〇良知慎太郎 1 、河岸洋和 1,2 、平井浩文 1,2 、亀井一郎 3 、近藤隆一郎 4 、田中奏 5 、三好孝則 5 静大院農、2 静大グリーン研、3 宮大農、4 九大院農、5 帝人(株)

背景•目的

近年、石油系プラスチックによる石油資源の枯渇問題や 廃棄物処理の問題から、リグニンモノマー等を利用した、 再生可能なバイオプラスチックの研究が進められている。

しかし、木材中のリグニンは複雑な構造をもつため、分解 産物も極めて複雑となり、プラスチックモノマーとして安定 供給可能な手法が確立されていない。

🌄 白色腐朽菌とは・・・

自然界においてリグニンを高度に分解出来る唯一 の微生物であり、脱リグニンツールとして期待されて

リグニン分解酵素の作用によりリグニンを低分子化 し、生成するリグニンモノマーは即座に細胞内に |取り込まれ分解・無機化されてしまう。

リグニン分解酵素によるin vitroでの分解が可能で あれば、低分子フェノールを回収することが可能!

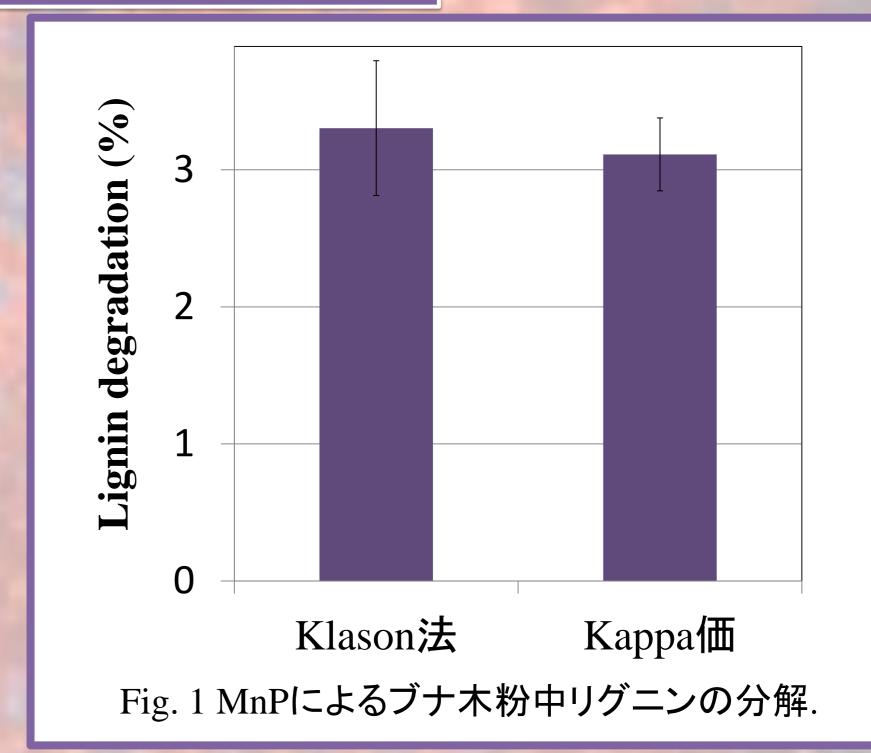
本研究では、リグニン由来低分 子フェノールを定量的に得ること を目的に、リグニン分解酵素の一 種であるマンガンペルオキシダー ゼ(MnP)を用いて、木材中リグニ ンのin vitro分解を試みた。

リグニンのin vitro分解の 報告例はない。

MnPによるブナ木粉中リグニンのin vitro分解の試み

MnPの調製法

Phanerochaete sordida YK-624株由来MnP高生産株BM-65株をMnP産生用液体培地にて、 30℃ • 150 rpmで7日間振盪培養

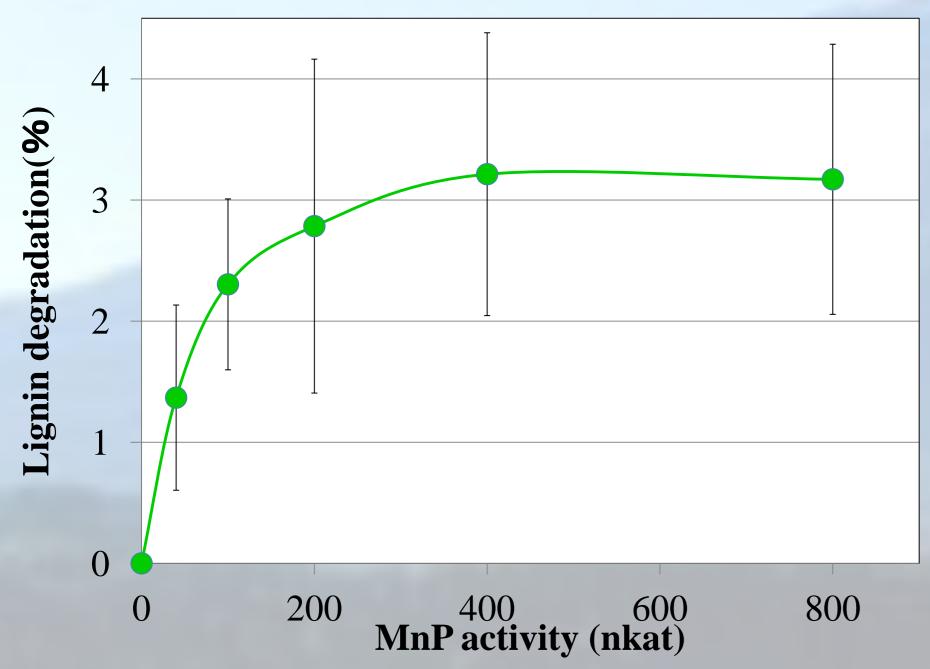

培養液を回収し、透析後、陰イオン交換カラムクロマトグラフィーにて精製 部分精製MnPを取得

ブナ木粉のMnP処理

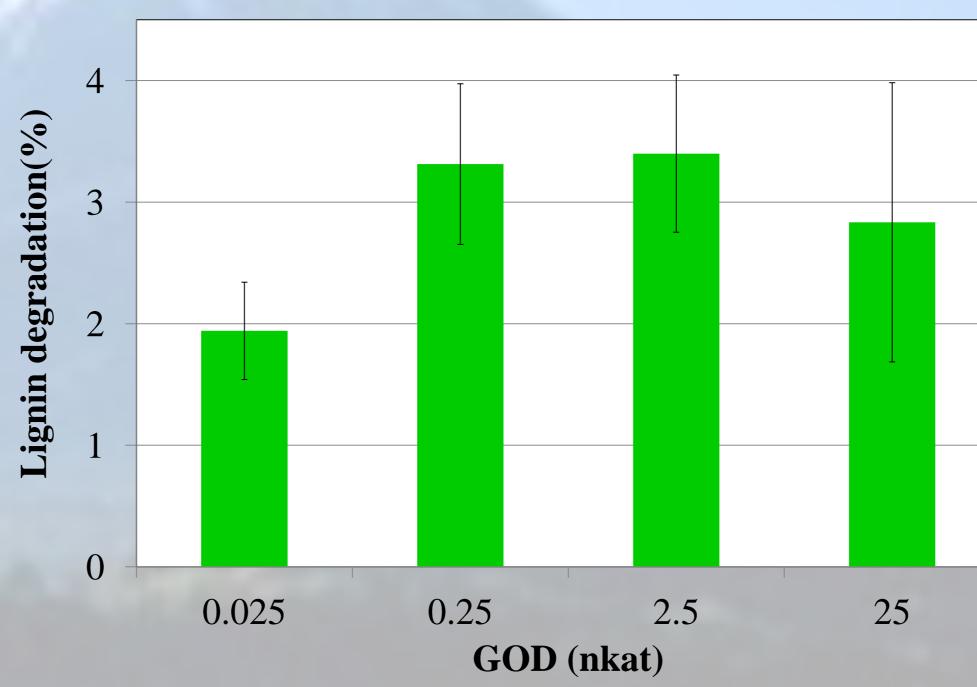
下表の反応系を構築し、24 h • 150 rpm • 30℃にて酵素処理を行った。

60 ml	20 ml (Kappa価)
	(К арра ш) 0.15 g
0.05%	
25 mM	
0.1 mM	
0.75 U	0.25 U
	(Klason法) 0.45 g 0, 1200 nkat 0.0 25 n 0.1

処理後、リグニンの定量を Klason法及びKappa価測定 により行った。




☆約3%のリグニン分解が認められた! → 『リグニンのin vitro分解』として 初めての報告!


MnPによるリグニンのin vitro分解 一最適化条件の検討-

(i) MnP添加量、(ii) GOD添加量、(iii) セルラーゼ添加の効果、について検討を行った。 処理後、Kappa価を測定し、リグニン分解率を算出した。

反応系(20 ml) (n = 3, 50 mM malonate buffer, pH 4.5)	MnP添加量	GOD添加量	セルラーゼの有無
脱脂ブナ木粉(100 mesh pass)		0.15 g	
MnP	0∼800 nkat	0∼800 nkat 400 nkat	
Tween 80		0.05%	
Glucose	25 mM		
MnSO ₄		0.1 mM	
GOD	0.25 U	0 ~ 25 U	0.25 U

MnP+cellulase MnP cellulase

Fig. 3 リグニンのin vitro分解におけるGOD添加量の影響.

Fig. 4 リグニンのin vitro分解におけるセルラーゼの影響.

最適条件: MnP 400 nkat, GOD 2.5 U, セルラーゼ有り

- ☆ MnPにより、ブナ木粉中リグニンのin vitro分解に成功した。
- **卒 最適条件を検討した結果、MnP 400 nkat、GOD 0.25 U、セルラーゼ添加条件下で最も良いリグニン分解率が** 認められた。