

木口面の画像解析による木材の吸湿性評価

(日大院生物資源)〇寺尾美里矢 (日大生物資源)宮野則彦

【緒言】

木材の諸特性を明らかにし、さらに多様な利用法を追求する上で、その特性・機能をより簡便に評価する方法が必要である。本研究では、木 材の吸湿特性を画像解析により評価することを目的として、木材試料の木口面を実体顕微鏡で観察し、その画像データを基に木材の吸湿量と 空隙要素の面積率や周囲長との関係を検討した。

【測定方法および手順】

試料の木口面を実体顕微鏡で観察し、その画像を画像解析ソフトに取り 込み、表面に存在する空隙の面積と周囲長(図2)を計測し、これらのデータ と、試料の吸湿量との関係性を検討した。実験に用いた試料の一覧を表1 に示す。これらの試料は、既往の研究によりJIS規格に基づいて吸湿性を測 定し、その後気乾状態で養生していたものである。

表1. 樹種名と気乾密度

樹種名	気乾密度 (g/c㎡)	樹種名	気乾密度 (g/c㎡)	樹種名	気乾密度 (g/c㎡)	樹種名	気乾密度 (g/c㎡)
アサダ	0.73	クスノキ	0.50	シデ	0.66	ナラ	0.72
イスノキ	0.83	クリ	0.49	シナ	0.49	ニガキ	0.61
イチイガシ	0.95	クルミ	0.44	シラカシ	0.96	ニレ	0.63
エンジュ	0.65	ケヤキ	0.65	セン	0.46	ハゼ	0.76
カエデ	0.76	コナラ	0.59	タブ	0.64	マカンバ	0.67
カゴノキ	0.67	シイ	0.58	チシャノキ	0.61	ミズメ	0.78
キハダ	0.42	シオジ	0.54	トチ	0.42	ヤマザクラ	0.67

2) 空隙面積率と吸湿時間

1)で吸湿量との相関が認められた、空隙面積率14%以上を有する試料を 対象に、吸湿開始10分後・30分後・12時間後の吸湿量との比較を図3(b)、4、 5に示す。結果、吸湿時間が長いほど空隙面積率との相関が低くなることが わかった。

①観察面の切削

一般的な鋸やバンドソーのみの切削では毛羽立ちが生じ詳細な観察が困 難になるため、木口削機(藤久機械工業株式会社製 木口削機D型)を用い て滑らかな切削面を作成する。

図1. バンドソーによる切削後画像 ②切削面の染色

空隙部分の検出を行う際に、二値化処理を施す。この処理中における余 分な抽出部分を減らすため、あらかじめ木口面を朱肉で染色しておく。

削機による切削後画像および空隙面積・空隙周囲長の例

③200µm^d以下の面積部分を削除

抽出する面積に下限値を設けない場合、小さな抽出部分が重なることによ り隣接する空隙が結合するという事象が発生したため、今回は200μ㎡という 下限値を設け、それ以下の部分を削除した。

図4. 空隙面積率14%以上の試料における 空隙面積率と吸湿開始30分後の吸湿量の関係

空隙面積率14%以上の試料における 巡5. 空隙面積率と吸湿開始12時間後の吸湿量の関係

3) 空隙面積率及び気乾密度と吸湿量の比較

従来、木材の吸湿性は密度との相関が大きいと言われており、既往の研究 でもそのような結果が得られている。しかしながら、図では空隙面積率のほう が吸湿量との相関が高い。このことから、吸湿の初期段階においては、試料 の表面の構造による評価をした方が適していると考えられる。

作業手順

④細部の修正

図のように自動での検出が十分でない部分は手動で修正を加える。

付け足す

空隙面積率14%以上の試料における空隙面積率および気乾密度と吸湿開始10分後の吸湿量の関係

4) 空隙総周囲長と吸湿量

空隙の周囲長の合計を空隙総周囲長とする。図7において、同等程度の空 隙面積率を有していながら異なる吸湿量を示した試料(赤枠内に示すもの)に ついて、空隙の総周囲長と吸湿量との関係を示した。結果、どの空隙面積率 においても、概ね空隙の総周囲長と吸湿量の間に正の相関が確認された。

空隙面積率約4%の試料における空隙総周囲長と吸湿開始10分後の吸湿量の関係

5) 同樹種かつ別個体の試料を用いた実験

上記までの結果は、1樹種につき1試料を用いていたため、全て密度や構造 が異なっていた。そこで、切削と画像解析が比較的容易であったアサダ・クル ミについて、これまでの試験に用いたものとは別の個体の試料を4枚づつ用 意し、吸湿試験と画像解析を行った。なお吸湿試験については、吸湿量の差 を明確にするために、相対湿度変化がRH50%→RH75%の部分をRH50% →RH98%に変更し、吸湿量の測定を行った。例としてアサダのデータを図8、 9に示す。1)~4)までの結果と概ね一致する傾向が得られた。

【結果および考察】

1) 空隙面積率と吸湿量

単位面積あたりの全空隙面積の割合を空隙面積率として示す。図3におい て、全試料の空隙面積率と吸湿量との関係をみると、高い空隙面積率を有 する試料の方が、吸湿量との相関が高いことがわかる。

吸湿開始10分後の吸湿量の関係

【総括】

空隙総周囲長と吸湿開始10分後の吸湿量の関係

空隙面積率による区分わけをした上で、空隙総周囲長の値から吸湿量の大 小を評価することが可能であると考えられる。また2)より、木材表面の状態か ら吸湿量を評価する場合は、吸湿の初期段階、つまり調湿機能の中の吸湿に おける即効性を評価することに適していると考えられる。