担子菌Coprinopsis cinereaの子実体形成過程において 発現する糖質関連酵素遺伝子の網羅的解析

(農工大・農)〇梅澤 究,古崎利紀,石井一夫,吉田 誠,(秋田県立大生物資源)村口 元

担子菌の細胞壁は主にキチンやグルカンが層構造を呈する事により形成される.菌糸体から子実体への分化過程は劇的な形態学的変化 を伴うことから、細胞壁構成多糖の構造も大きく変化することが予想される.この細胞壁構成多糖の構造変化には、キチナーゼやβ-グルカ ナーゼなど、種々の糖質関連酵素が関与していることが予想される.本研究では、担子菌子実体形成のモデル菌であるCoprinopsis cinerea (ウシグソヒトヨタケ)の子実体形成過程の各発達段階を対象として、次世代シークエンサーを用いたRNA-seqによるトランスクリプトーム解析 を行った。これにより、子実体形成に関与する糖質関連酵素に関する新たな知見を得ることを試みた

図1. C. cinereaの子実体

対象とした菌株・・・ Coprinopsis cinerea #326株

成熟子実体

- 培養条件 ••• YMG培地, 25℃, 明期 12時間 暗期 12時間
- シークエンサー ••• Illumina Hiseq 2000 (paired end)
- 対象とした発達段階

①: 菌糸体, ②: 菌糸塊, ③: 初期原基, ④: 原基 0時間※, ⑤: 原基 12時間, (6):柄24時間,(7):傘24時間,(8):柄30時間,(9):傘30時間, ①: 柄 36時間, ①: 傘 36時間, ②: 柄 39時間, ③: 傘 39時間 ※各時間は成熟の引き金となる光照射開始からの経過時間を表す.

- サンプル・・・13個の対象を各2サンプルずつ,計26サンプル
- 発現変動遺伝子の検出法・・・iDEGES/edgeR edgeR

(Fisher's exact test, P < 0.05, FDR < 0.05)

表1. シークエンスデータの概要

	全リード数	マッピング	平均リード長	エケソンの	平均リード
リンフル		されたリード数	(bp)	カバー 率(%)	depth
1-1	31205060	2733746	100	72.8	15.3
1-2	37134290	5332398	100	74.4	30.0
2-1	31223972	3988684	100	72.6	21.7
2-2	34762388	5550734	100	74.4	30.7
3-1	29580744	2576952	100	71.7	13.3
3-2	37690666	3145808	100	73.7	16.6
(4) -1	32147942	6145670	100	74.7	31.9
(4) -2	34817668	4040920	100	74.9	21.2
5-1	37244680	6074716	100	75.4	31.7
5-2	48903482	5549166	100	74.7	28.4
6-1	34887484	5426082	100	73.8	28.3
6-2	42412510	4428834	100	75.0	22.7
7-1	49589664	1136390	100	71.1	6.7
7-2	26740264	1839922	100	70.0	9.8
8-1	51622648	1014514	100	74.9	7.3
8-2	33568462	874332	100	70.9	5.5
9-1	37849696	1375560	100	70.1	8.3
9-2	33878678	2778376	100	70.3	14.7
10-1	45779870	1070734	100	69.4	6.1
(10)-2	34043780	1645998	100	69.3	9.0
(11)-1	36752246	963696	100	67.9	6.2
(11)-2	28338818	2106680	100	68.2	11.9
(12)-1	44203804	1347874	100	73.8	8.2
(12)-2	19762202	687346	100	63.4	4.4
(13)-1	37052022	2921056	100	67.1	15.6
(13)-2	22922628	852788	100	66.2	4.9

	発達 段階	変動遺伝子の CAZyファミリー	相同性検索から 推測された機能
CLICL_0004710_D189 CC10_008710_D180 CC10_0187800_D45 CC10_0187800_D45 CC10_0187800_D45 CC10_0187800_D458 CC10_0187800_D458 CC10_0187800_D458 CC10_0187800_D458 CC10_028870_D47 CC10_028870_D47 CC10_0187800_D458 C	菌糸 菌糸塊	 GH1, 3, 5, 6, 7, 13, 15, 16, 18, 23, 24, 28, 30, 31, 38, 43, 47, 53, 62, 74, 79, 85, 92, 105, 109, 115, GT1, 2, 15, 32, 35, 39, 69, 83, 90, PL12, 14, CE1, 4, 16, AA2, 3, 5, 7, 9 	セルラーゼ, ヘミセルラー ゼ, ペクチナーゼ, ß-1,3-グルカナーゼ, キチ ナーゼ, キチン脱アセチ ル化酵素
Cc10, 025170, 0218 Cc10, 025170, 0218 Cc10, 123170, 0218 Cc10, 123170, 0218 Cc10, 058870, 0416 Cc10, 058870, 0416 Cc10, 05870, 0416 Cc10, 05870, 0416 Cc10, 05870, 0416 Cc10, 058770, 0418 Cc10, 057710, 0418 Cc10, 058710, 0418 Cc10, 058	原基	GH5, 11, 16 , 31, 47, 63, 71, 79, 109, GT2, 4, 8, 22, 24, 39, 50, 68, 69, PL14, AA2, 3, 7, 9	ß-1,3-グルカナーゼ, KRE6
CC10_057870_0Hs CC10_058770_A69 CC10_058770_A69 CC10_058770_0Hs CC10_058770_0Hs CC10_058770_0Hs CC10_058770_0Hs CC10_058770_0Hs CC10_05870_0H	柄 初期	GH11, <mark>72</mark> , <mark>128</mark> , GT <mark>2</mark> , PL14, AA3, 5, 7, 9	ß-1,3-グルカナーゼ ß-1,3-グルカントランスフェ ラーゼ, キチン合成酵素
Circl_0381870_Cirls3 Circl_0281870_Cirls3 Circl_028170_Cirls3 Circl_0281870_Cirls3 Circl_0281870_Cirls4 Circl_0281870_Cirls4 Circl_0281870_Cirls4 Circl_0281870_Cirls4 Circl_0281870_Cirls4 Circl_0281870_Cirls4 Circl_0381870_Cirls4	柄 全般	GH5, 10, 16, 17, 18, 37, 55, GT2, 15, 20, 28, 69, AA9	ß-1,3-グルカナーゼ, キチナーゼ
CCTG_0000010_P14 CCTG_000010_GTG_0472 CCTG_000010_GTG_0472 CCTG_017210_A49 CCTG_01100010_A49 CCTG_0110010_A49 CCTG_0110010_A49 CCTG_0110010_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_0110000_CTG_0474 CCTG_01100000_CTG_0474 CCTG_01100000_CTG_0474 CCTG_011000000_CTG_0474 CCTG_011000000_CTG_0474 CCTG_010000000_CTG_0474 CCTG_0100000000000000000000000000000000000	柄 後期	 GH2, 3, 5, 13, 16, 17, 18, 30, 37, 71, 79, 99, 109, 128, GT2, 20, 32, 48, 90, CE1, 4, 16, AA5, 6, 7 	ß-1,3-グルカナーゼ, ß-1,6-グルカナーゼ, キチ ナーゼ, キチン合成酵素, ß-1,3-グルカン合成酵素, キチン脱アセチル化酵素
CC16, 0257170, CE4 CC16, 026870, C44e CC16, 026870, C44e CC16, 026870, C47e CC16, 1201570, C47a CC16, 1001570, C47a CC16, 0268470, C47a	傘 24時間	GH10, 13, <mark>16</mark> , 24, GT4, 8, 15, 23, 25, 49, 69, 90, CE1, AA2, 3	ß-1,3-グルカナーゼ
CCI_0_000000000000000000000000000000000	傘 30時間	GH12, 16 , 24, 28, 63, 71, 85, 105, 109, 125, GT 2 , 8, 22, 28, 33, 65, 90, PL3, CE1, 3, 4 , 15, AA3, 5, 7, 9	ß-1,3-グルカナーゼ, キチ ン合成酵素, キチン脱ア セチル化酵素
CC10, 058270, 0758 CC10, 058270, 245 CC10, 058970, 245 CC10, 058970, 245 CC10, 058970, 244 CC10, 05970, 244 CC10, 05970, 244 CC10, 05970, 244 CC10, 05970, 247 CC10,	傘 36時間	GH2, 3, 5, 13, 15, 16, 17, 18, 20, 24, 47, 79, 92, GT2, 15, 22, 39, 68,	ß-1,3-グルカナーゼ, SKN1, キチナーゼ, ß-N-アセチ ルヘキソサミニダーゼ,

表2...時系列順に隣り合う2つの発達段階の間の 発現変動遺伝子数

	-	発現増加	発現減少		
	全体	糖質関連酵素	全体	糖質関連酵素	
2 菌糸塊	1406	120	1344	60	

(3)初期原奉	2032	75	3070	180
④原基 0時間	412	26	302	20
⑤原基 12時間	595	15	963	66
⑥柄 24時間	1140	77	828	28
⑧柄 30時間	11	3	5	0
⑩柄 36時間	210	22	279	11
12柄 39時間	0	0	3	0
⑦傘 24時間	1429	37	1782	105
⑨傘 30時間	1456	72	535	10
①1 傘 36時間	1410	103	836	14
13 傘 39時間	544	34	507	41

	20H/][H]	90, PL8, 14, CE1, 4 , 5, 15, AA5, 6, 7, 9	キチン合成酵素, キチン脱アセチル化酵素	
	傘 39時間	GH5, 10, 16, 18, 88, 105, GT1, 2, 15, 20, 32, PL12, 14, CE1, 4, 9, 12, AA6, 7, 9	ß-1,3-グルカナーゼ, KRE6, キチナーゼ, N-アセチル グルコサミン-6-リン酸脱 アセチル化酵素	
		赤:真菌細胞壁関連酵素	,青:植物細胞壁分解酵素	
図3. 発現変動のみられた糖質関連酵素遺伝子のヒートマップ.				

义: |各遺伝子の発現量データをlog2変換した値のZ値で表す. 緑:高発現, 赤:低発現.

子実体形成過程において、細胞壁構成多糖の構造変化への関与が予想される種々の糖質関連酵素遺伝子の発現増加がみられた、同様の機能を有する と推測される酵素遺伝子にも発現パターンの違いが見られ、子実体形成が複雑に発現制御された様々な糖質関連酵素の協同的な作用により行われるこ とが予想された。

本研究は、平成23年度新たな農林水産政策を推進する実用技術開発事業「突然変異育種法を利用した栽培きのこの有用形質創出とそのDNAマーカーの開発」(23053)の一環として実施された。また、DOE Joint Genome Institute. JGI's Community Sequencing Program "Functional genomics in the model mushroom Coprinopsis cinerea" Primary Investigator (PI): Patricia J. Pukkila, Univ. of North Carolinaのサポートを得て実施されたので感謝の意を表する。